Design A Low Power eight-bit Reversible Parallel Binary Adder/Subtractor

G.Laksmi Bhavani and A.Kalpana

Abstract- Reversible Logic is becoming more and more prominent technology having its applications in Low Power CMOS, Quantum Computing, Nanotechnology, and Optical Computing. Reversibility plays an important role when energy efficient computations are considered. In this paper, Reversible eight-bit Parallel proposed. In all the three design approaches, the full Adder and Subtractor are realized in a single unit as compared to only full Subtractor in the existing design. The performance analysis is verified using number reversible gates, Garbage input/outputs and Quantum Cost. It is observed that Reversible eight-bit Parallel Binary Adder/Subtractor/ with Design.

Keywords
Reversible Logic, Quantum Cost, Low Power, Reversible Parallel Binary Adder/Subtractor.

I. INTRODUCTION
A Reversible circuit/gate can generate unique output vector from each input vector, and vice versa, i.e., there is a one to one correspondence between the input and output vectors. Thus, the number of outputs in a reversible gate or circuit has the same as the number of inputs, and commonly used traditional NOT gate is the only reversible gate. Each Reversible gate has a cost associated with it called Quantum cost. The Quantum cost of a Reversible gate is the number of 2*2 Reversible gates or Quantum logic gates required in designing. One of the most important features of a Reversible gate is its garbage output i.e., every input of the gate which is not used as input to other gate or as a primary output is called garbage output. Arithmetic circuits such as Adders, Subtractors, Multipliers and Dividers are the essential blocks of a Computing system. Dedicated Adder/Subtractor circuits are required in a number of Digital Signal Processing applications. Several designs for binary Adders and Subtractors are investigated based on Reversible logic. Minimization of the number of ReversiReversible gates, Quantum cost and garbage inputs/outputs are the focus of research in Reversible logic.

Reversible Gates
The simplest Reversible gate is NOT gate and is a 1*1 gate. Controlled NOT (CNOT) gate is an example for a 2*2 gate. There are many 3*3 Reversible gates such as F, TG, PG and TR gate. The Quantum Cost of 1*1 Reversible gates is zero, and Quantum Cost of 2*2 Reversible gates is one. Any Reversible gate is realized by using 1*1 NOT gates and 2*2 Reversible gates, such as V, V+ (V is square root of NOT gate and V+ is its hermitian) and FG gate which is also known as CNOT gate. The V and V+ Quantum gates have the property given in the Equations 1, 2 and 3.

\[\text{V} \cdot \text{V} = \text{NOT} \] \hspace{1cm} (1)
\[\text{V} \cdot \text{V}+ = \text{V}+ \cdot \text{V} = 1 \] \hspace{1cm} (2)
\[\text{V}+ \cdot \text{V}+ = \text{NOT} \] \hspace{1cm} (3)

The Quantum Cost of a Reversible gate is calculated by counting the number of V, V+ and CNOT gates. Thapliyal and Ranganathan [5] proposed the design of Reversible Binary Subtractor using TR Gate. The particular function like Binary Subtraction is implemented using TR gate effectively by reducingsnumber of Reversible gates, Garbage outputs and Quantum Cost. Thapliyal and Ranganathan [6] presented a design of Reversible latches viz., D Latch, JK latch, T latch and SR latch that are optimized in terms of quantum cost, delay and garbage outputs. Lihui Ni et al., [7] described general approach to construct the Reversible full adder and can be extended to a variety of Reversible fulladders with only two Reversible gates. Irina Hashmi and Hafiz Hasan Babu [8] designed an efficient reversible barrel shifter which is capable of left shift/rotate used for high speed ALU applications.

II. Proposed Model
Half Adder/Subtractor
Reversible half Adder/Subtractor – Design III is implemented with three Reversible gates of which two are FG gates each having Quantum cost of one and a PG gate with Quantum cost four is as shown in the Figure 1. The numbers of Garbage outputs is two i.e., g1 and g2, Garbage inputs are one denoted by logical zero and Quantum Cost is six.

Full Adder/Subtractor

Figure 1. Reversible Half Adder/Subtractor – Design
The Reversible Full Adder/Subtractor Design III consists of two FG, two PG gates, and their interconnections are shown in the Figure 2. The three inputs are A, B, and Cin. The outputs are S/D and C/B. For Ctrl value zero the circuit performs addition and Subtraction for Ctrl value one. The numbers of Garbage inputs are 1 represented by logical zero. The Garbage outputs are 3 represented by g1 to g3. The Quantum Cost for the design is 10. A Quantum Cost advantage of 11 is obtained when compared to Adder/Subtractor Design I and of 4 when compared to Adder/Subtractor Design II. Quantum Cost advantage is due to the realization of Arithmetic blocks using two PG gates as against two F and one TR gate for Design I and two TR gates for Design II.

Figure 2. Reversible Full Adder/Subtractor – Design III

Reversible Eight-bit Parallel Binary Adder/Subtractor

The Half and Full Adder/Subtractor Design I, Design II and Design III are used to construct Reversible eight-bit Parallel Binary Adder/Subtractor is shown in the Figure 3. The ctrl input is used to differentiate eight-bit addition and subtraction functions. The two eight-bit binary numbers are A0 to A7 and B0 to B7. Carry/Borrow is obtained after Addition/Subtraction is represented by C_B1 to C_B7. The outputs Sum/Difference and Carry are shown as S_D0 to S_D7 and C_B8 respectively.

The implementation requires seven Full Adder/Subtractor units and one half Adder/Subtractor units in which first stage is half Adder/Subtractor.

III. Simulation Results

It is observed that Design III has better performance compared to Design II and Design I. The number of Reversible gates required for Design III is only 4 as compared to 8 and 4 in the cases of Design I and II respectively, which indicates that the improvement of 100% compared to Design I. The Garbage outputs are 5 in the case of Design I, whereas 3 in the case of Design II and Design III, i.e., the improvement is 65% in Design III compared to Design I. The Garbage inputs are 3 in the case of Design I and one in case of Design II and Design III, gives 200% improvement in Design III compared to Design I. Quantum Cost of Design III, Design II and Design I are 21, 14 and 10 respectively, resulting in improvement of Design III over Design II and Design I are 40% and 110% respectively.

The existing Reversible Binary Subtractor based on Reversible gate [5] to implement full Subtraction requires Quantum Cost of 12, Garbage inputs of one and Garbage outputs of two. The proposed Reversible eight-bit Parallel Binary Adder/Subtractor Design III is better compared to the existing design in terms of Quantum Cost, Garbage inputs and Garbage outputs and also in our design the Full Subtraction and Addition function is implemented together as compared to only Subtractor in the existing design. Hence we claim that Design III is better in terms of performance compared to the existing designs.

G.Laksmi Bhavani: She studied B.Tech in ECE at JNTUHyderabad,M.Tech in VLSI System Design at JNTUHyderabad.Now,She is working as assistant professor atBandari Srinivasa Institute ofTechnology.She is doing research on Advanced VLSI technologies.
A.Kalpana: She studied B.Tech in ECE at JNTU Hyderabad,M.Tech in VLSI System Design at JNTU Hyderabad.Now, She is working as assistant professor atBandari Srinivasa Institute ofTechnology.She is doing research on Advanced VLSI technologies.